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1. Introduction 
We propose a new, robustly scalable technique for phase locking multiple gain 

cores in a fiber structure based on antiguiding or radiative coupling, rather than the more 
commonly pursued method of evanescent wave phase locking.  Our focus is on a ribbon-
like geometry in which a waveguide region contains multiple gain cores arranged in a 
periodic array.  The distinguishing feature of such antiguiding structures is that refractive 
index of the gain cores is lower than or equal to that of the surrounding waveguide 
regions.  This is just the opposite of evanescently phase locked structures in which the 
gain cores have higher refractive index than the surrounding regions.  The critical design 
considerations in the structures proposed within are: first that they strongly favor 
oscillation in a single transverse mode, and second that this strongly favored mode 
exhibits good intensity uniformity across the entire array of gain cores.  We require single 
mode operation so that a static phase corrector placed in the near field of the ribbon 
laser’s output can optimize the phase across the aperture to achieve a high Strehl ratio in 
the far field. The requirement that the strongly favored mode exhibit good uniformity 
across the entire array of gain cores is necessary to ensure that the ribbon structure’s gain 
saturates in a uniform manner, so as not to increase the propensity of the device to 
operate in multiple transverse modes.  Taken together, these two design considerations 
lead to the surprising result that optimized structures have equal refractive indices in their 
gain cores and the no-gain surrounding waveguide regions.   

Because we are considering ribbon structures, a one-dimensional transverse 
treatment provides a reasonable model for the properties of these devices. To facilitate 
our analysis we develop and present a simple but elegant technique using electric field 
propagators to generate the eigenmode spectrum of the ribbon structures.  Afterwards, we 
execute a full two-dimensional transverse analysis to accurately assess modal gain 
discrimination.  Interestingly, by deriving the eigenmode spectrum of ribbon structures 
we are able to make the connection with photonic (so-called “holey”) crystal fibers, 
which are constructed with actual physical holes in the glass.1  Our calculations reveal 
similar formation of bandgaps in the allowed wavevector values for ribbon fibers with a 
periodic modulation in the refractive index, as typified by holey fibers. 

Because the ribbon structures proposed here contain a waveguiding region that is 
embedded in a lower index outer cladding region, they have many features in common with 
single-core double-clad fiber lasers.  The development of these double-clad fiber lasers has 
brought fiber lasers to the forefront of possible approaches for high beam quality, high average 
power continuous-wave fiber laser sources. However, one of the draw backs of the single-core 
double-clad fiber laser approach for generating high average power is that the pump light is 
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delivered into the end of the fiber, which requires diodes with radiance conditioned outputs. Our 
proposed pumping approach benefits from the planar ribbon structure, since it is compatible with 
the use of laser diode bars without radiance conditioning for pump excitation. 

Because individual fiber cores are believed to be limited to roughly 100 W of 
average power generation2 due to the output facet damage limit, very high average power 
fiber systems are anticipated to require phase combining many individual apertures.  The 
most commonly used approach for phase locking multiple apertures or gain cores 
together is the use evanescent wave coupling to phase lock the cores to their nearest 
neighbors. One such layout entails evanescent phase locking in which multiple gain cores 
are distributed around the perimeter of a larger pump-cladding region in a circular 
layout 3.  In this approach, the evanescent wave from each core is adjusted to overlap its 
neighboring cores following the same technique that was used in early diode bar 
development to phase lock multiple stripe devices4.  To date, the results from this type of 
evanescent nearest neighbor phase locking have been inconclusive.  Another arrangement 
is based on hexagonal packing of the cores, and has apparently offered impressive initial 
results for a seven-core case5.  However, with evanescent phase locking only nearest 
neighbors communicate with one another so that when coup ling many cores together, it is 
anticipated that a general degradation of the phase fidelity for cores will occur, the farther 
away from each other they are.   

The ribbon structure proposed here contains multiple gain- loaded cores in a linear 
array, with a non-evanescent approach to keep the cores’ output radiation coherently 
phased together. This five-core prototype ribbon fiber is shown schematically in Fig. 1.  
In this approach, the gain elements are “antiguided” in a “leaky waveguide” array, 
analogous to the most successful scheme for phasing laser diode elements6.  The 
antiguided cores are arranged in a row, and the cores are situated in a long aspect ratio 
rectangle or “ribbon” with a slightly higher index than the outer pump-cladding medium.  
The ribbon is encapsulated in a cladding that guides the pump light, analogous to current 
single-core cladding-pumped fibers.  Scaling consists of increasing the number of 
antiguided cores. We believe this scheme will scale to higher power than evanescently 
coupled cores because of the strong phase locking inherent in the approach.  

To explore key aspects of our proposed ribbon fiber, we start by investigating a 5-
core device. Although the ribbon structure is unusual, similarly complex fiber structures 
have been made in silica, including more complex annular arrays of doped and undoped 
material, evanescently coupled cores, and a variety of odd-shaped cladding-pumped 
fibers, bundles, and close-packed matrices. This can be accomplished using preform 
packing and pulling technologies.  Means of drawing fibers such that the shape of the 
preform is preserved have been demonstrated and commercialized,7 so the resulting 
ribbon reflects the spatial characteristics of the preform.   
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Figure 1 Cross-sectional view of 5-core ribbon fiber. 

 
To be specific with regard to refractive index values, we assume that the structure 

is fabricated out of pure fused silica along with germanium and fluorine dopants to 
control the refractive index, and Yb or Nd doping to provide the gain- loaded regions.  
The round doped core sections serve as the gain regions for the optical wave that is 
confined to the ~9 mm high by ~ 60 mm wide rectangular waveguide region.  This 
rectangular region may be doped with Ge, which increases the index of the material 
surrounding the doped cores in a specified manner.  The pump radiation is confined to the 
larger ~ 350 mm by ~ 350 mm square region, which we here assume is pure silica and so 
has a lower refractive index than the waveguide region. 
 
2. One-Dimensional Theory with Periodic Refractive Index and Gain 
 To motivate our results, we begin by analyzing the simpler problem of the one-
dimensional structure that is related to the two-dimensional structure of Fig. 1.  We take a 
lineout of the index profile along the centerline of the Fig. 1 structure, and plot in Fig. 2 a 
particular refractive index profile to serve as an illustrative case. To further simplify our 
analysis we will also assume the electric field polarization corresponds to a TE wave. 
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                                (a)                                                                                     (b) 
Figure 2  (a) Refractive index profile as a function of transverse position 
in the one-dimensional approximation to our proposed ribbon waveguide 
structure given in Fig. 1.  The gain regions coincide with the lower index 
segments in the waveguide region.  (b) Coordinate system used in our 
analysis for the TE polarized wave (w.r.t. refractive index boundaries) as 
shown. 

 
We begin with the wave equation for the electric field in one of the constant index strips 
along the waveguide, 
 

( )
2

2 2 , 0t

n
r t

c
ε

  ∇ − ∂ =     

r r
.        (1) 

 
Restricting the electric field to be TE polarized (the electric field parallel to the interfaces 
between the index segments that make up the ribbon), we write the electric field in terms 
of its frequency, w, and longitudinal k-vector, b, as, 
   

( ) µ ( ), ( ) i t z
yr t u E x e ω βε −=

r r
,        (2) 

 

where µyu  is a unit vector in the y-direction.  Substituting (2) into (1), then gives the 
equation that must be satisfied by E(x), 
 

( ) ( )
22

2
2

d E x n
E x

dx c
ω

β
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which is the one-dimensional Helmoholtz equation, or an eigenvalue equation for the 
Laplacian.  Due to the polarization direction of the electric field (TE wave), the boundary 
condition to be satisfied at the interfaces between neighboring strips having differing 
refractive indices in Fig. 2 is one of continuity, i.e., the electric field amplitudes are the 
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same on each side of the boundary.  In addition to the continuity of the electric field 
amplitude at the interfaces in the ribbon structure, the second order differential equation 
(3) for the electric field amplitude imposes a continuity condition on dE/dx at the 
interfaces.  If dE/dx where not continuous at the interfaces, then d2E/dx2 would blow up 
at those locations leading to infinitely large values of the electric field.  Finally, the 
boundary condition on the electric field amplitude outside of the rectangular waveguiding 
structure of Fig. 2 is that it approaches zero at large distances from the waveguide.  
Summarizing, the boundary conditions to be satisfied by the electric field are, 
 

( ) ( )i iE x E x− += ,         (4) 
 

| |i i

dE dE
x x x xdx dx− +=

= =
,        (5) 

      
 

( ) 0E x as x→ → ±∞ ,        (6) 
 
where xi

- and xi
+ refer to the limiting values of x at the ith interface when approached 

from the negative and positive sides, respectively.  Because we are specifically interested 
in ensuring we develop designs that will preferentially support only a single transverse 
mode, we must find all electric field eigenmode solutions to (3) that satisfy the boundary 
conditions (4) through (6). These eigenmode solutions will be defined in terms of their 
longitudinal k-vector values, b.  

Our method of solution as outlined here will be to arbitrarily define an electric 
field amplitude of unit intensity at x=0 for the structure in Fig. 2, and then assume a k-
vector value.  To determine whether the assumed k-vector value corresponds to an actual 
eigenmode of the structure, we will then propagate the electric field across the structure 
from x=0 to well beyond the waveguiding portion of the structure (past 60 mm in Fig. 2).  
Applying boundary condition (6) then demands that if the assumed k-vector value 
corresponds to an actual eigenmode, the electric field amplitude will approach 0 as x 
increases without bound.   

The propagation of the electric field across the structure can be carried out 
numerically using (3) to incrementally step E and dE/dx across the structure given initial 
values for both quantities at x=0.  However, a quicker method and the one we use here 
takes advantage of analytic propagators to propagate the field across an entire constant 
index segment of the structure in a single step.   The advantage of the analytic propagator 
method, which we outline below, is that it is extremely efficient and applicable to very 
large structures (hundreds of cores) that would bog down the calculation using the more 
straightforward numerical incremental step calculation.  

To begin the calculation, we arbitrarily choose a target k-vector value for b in (3) 
and define both E and dE/dx at x=0- in Fig. 2.  The value of b is not completely arbitrary 
due to the boundary condition (6).  Since we require E(x) approach 0 as x approaches -• 
we must choose b > ncladw/c, where nclad is the refractive index value in the cladding 
region x<0 or x>60 mm in Fig. 2. As already mentioned, we can arbitrarily set the value 
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of E(x=0-)=1, however the value of dE/dx|x=0- is not arbitrary.  The functional form of 
E(x) for x<0 is 
 

( )
2

2 ln
x

cE x e
ω

β  −  = ,         (7) 
 
which decays exponentially to 0 as xÆ-•.  With E(x) given by (7), the value of 
dE/dx|x=0- is given by, 
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2

0
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x
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Denoting the refractive index of the ith constant index segment of the waveguide structure 
described in Fig. 2 by ni, the electric field and its first derivative in that segment will be 
given by, 
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where x0 is the x-coordinate of the far left-hand side of the segment and E0 and dE/dx|x=x0 
are the field and field derivative values there.  Writing the field propagators as in (9) and 
(10) facilitates a quick calculational technique for propagating the electric field across the 
structure in terms of its field amplitude and the derivative of field amplitude at some 
initial point such as at x=0 as given in (7) and (8).  Starting with the electric field 
amplitude and its first derivative at the left hand side of one of the constant index 
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segments, the electric field amplitude and its derivative at the right hand side of the 
constant index segment is given by, 
 

( ) ( )

( ) ( )
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where li is the width of the ith constant index segment in the ribbon fiber structure, and iα  

and °
iα are as define in (9) and (10), respectively.  The character of the electric field 

solution in any given index segment is strongly dependent on the relationship between 
the value of b and niw/c.  In the case of b<niw/c, the solution is freely radiating and the 
field propagates across the waveguide segment with an oscillatory behavior but does not 
decay in amplitude.  In the case of b>niw/c, the fields have an exponential dependence on 
the transverse coordinate in the waveguide segment, which is the situation one normally 
thinks of as evanescent coupling. 

Using the transverse propagator method outlined above, trial values of the wave 
vector b in (2) can be propagated across the waveguide structure.  The requirement that 
the trial b value correspond to an actual electric field eigenmode of the structure is that as 
xÆ• on the right hand side of the waveguide, the electric field amplitude goes to zero.  
In general, a trial value for b will generate an electric field amplitude that either diverges 
toward +• or -• as xÆ•.  This suggests a general method to search for electric field 
eigenmode b values.  If two nearby b values can be found that generate fields that 
diverge in opposite directions as xÆ•, then by continuity there must be an intermediate 
b value such that the field it generates goes asymptotically to 0 as xÆ•, i.e., a b value 
corresponding to an actual electric field eigenmode.  An example of this method is 
illustrated by the field calculations displayed in Fig. 3. 
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Figure 3  Electric field calculations for three different b values for the one-
dimensional ribbon fiber structure described by the refractive index profile in Fig. 
2.  The green, blue and red lines are fields calculated using theb values described 
in the text.  Also shown in black is the refractive index profile. 

The b values used for the calculations in Fig. 3 are as follows: 
 

b=8.7167195x(0.99999) shown as a blue dotted line  
b=8.7167195 shown as a solid red line 
b=8.7167195x(1.00001) shown as a green dotted line 
 

Starting at the left-hand side of the waveguide and using the initial conditions for the 
electric field and its derivative given by (7) and (8), respectively, the fields are 
propagated to the right hand side of the waveguide.  The smallest of the three b values 
leads to field diverging to -• and the largest of the b values leads to a field diverging 
toward +• as x Æ•.  The intermediate b value generates a field that goes to zero and so 
corresponds to the k-vector value of a true electric field eigenmode.  This suggests the 
algorithm we will then use to find all eigenmodes of the structure.  Starting with the 
smallest allowed b value, calculations of the field intensity will be made for the 
propagated field somewhere past the right hand boundary of the waveguide.  b values 
will be increased incrementally and every time the diverging electric field on the right 
hand side of the structure is found to change sign we know by continuity that there exists 
a b value corresponding to a true electric field eigenmode between the corresponding b 
values for the diverging fields.  Using the technique of repeated bisection, the method can 
then be iterated until the true beta values corresponding to eigenmodes are calculated to 
any desired accuracy.  This technique is generally applicable to arbitrary waveguide 
structures and can quickly yield the entire spectrum of a given structure’s allowed 
eigenmodes. 
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Applying the above described electric field eigenmode search algorithm to the 
one-dimensional structure described in Fig. 2, and fixing the vacuum wavelength of the 
radiation at 1.05 mm, leads to the b values of allowed eigenmodes detailed in Table I 
below.  In this calculation, the refractive indices of the gain region, the no-gain region 
within the waveguide region, and the outermost cladding region are taken to be 1.4585, 
1.4614, and 1.45, respectively. 
 

Table I  Eigenmodes of 1-Dimensional Structure Shown in Fig. 2 
Mode Reference 

Number 
b (1/microns) Overlap 

G  
Effective Index 

neff 
1 8.73955 0.16998 1.46049 
2 8.73935 0.15591 1.46046 
3 8.73908 0.13437 1.46041 
4 8.73883 0.11206 1.46037 
5 8.73046 0.40377 1.45897 
6 8.73045 0.40003 1.45897 
7 8.72765 0.60593 1.45850 
8 8.72627 0.54302 1.45827 
9 8.72447 0.47906 1.45797 
10 8.72266 0.40726 1.45767 
11 8.71672 0.73056 1.45667 
12 8.71426 0.64681 1.45626 
13 8.71107 0.59410 1.45573 
14 8.70750 0.55889 1.45513 
15 8.70391 0.52744 1.45453 
16 8.69740 0.58323 1.45345 
17 8.69342 0.54614 1.45278 
18 8.68868 0.52371 1.45199 
19 8.68361 0.50114 1.45114 

 
To ensure the far field of the structure of the ribbon fiber can be modified in a controlled 
way with a static phase corrector plate placed in the near field, it is critical that the device 
operate in a single transverse mode.  To completely answer the questions of what modes 
will lase in our ribbon fiber structure and with what discrimination between neighboring 
modes, requires a detailed wave-optics/energetics calculation that takes into account gain 
saturation.  Here we will be satisfied with an approximate treatment in which gain 
saturation is ignored.  The gain experienced by a different laser modes in this 
approximation will then be proportional to the overlap, G, of the mode’s intensity 
envelope with the gain- loaded portion of the fiber, 
 

( )
2

2

( )

( )

E x g x dx

E x dx
Γ = ∫

∫
,             (13) 

 
where g(x) is a function with value unity in those portions of the fiber that are gain 
loaded and 0 where there is no gain loading.  A straightforward calculation once the 
eigenmode fields are known, these overlap values are tabulated for the various allowed 
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electric field eigenmodes in Table I (recall that the gain- loaded regions correspond to the 
low refractive index segments).  The ideal situation for ensuring single transverse mode 
operation is then a single mode having a large G value that is well separated from the G 
values associated with all other modes.  Also listed in Table I are the effective index 
values, neff, associated with the various eigenmodes of the structure as defined by, 
 

effn

c

ω
β = .          (14) 

 
From (14) it is seen that c/neff is just the phase velocity associated with the eigenmode as 
it propagates in the ribbon structure.  Figure 4 plots the G values against the effective 
index values for the eigenmodes in Table I.  It is assumes that the gain- loaded areas are in 
the low-index regions.  The plot in Fig. 4 is closely related to a plot of the complex versus 
real refractive index values that characterize each of the eigenmodes.  The electric field 
that propagates down a gain loaded ribbon fiber structure shown in Fig. 3 is given by, 
 

( )
1
2( , ) ( )

zi t zr t E x e e
αω βε

Γ−=
r

,        (15) 
 
where a is the gain per unit length in the gain- loaded portion of the ribbon fiber structure.  
Rewriting (15) and introducing the effective index defined in (14), but extending it to 
complex values, 
 

1
2( , ) ( ) ( )
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i t zi t i z

cr t E x e E x e
ωωω β α

ε
    −− + Γ    

    = =
r

,      (16) 
 

 
Figure 4  The eigenmode overlap with the gain region is plotted against 
eigenmode effective index for the for the modes listed in Table I. 
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one immediately sees the connection between Gand the imaginary part of the complex 
effective refractive index, 
 

( )Im
2eff

c
n

α
ω

Γ
= ,         (17) 

 
which are proportional to each other.  Going back to the plot in Fig. 4, it is seen that the 
x-axis is just the real part of the complex refractive index and the y-axis is the imaginary 
part of the complex refractive index up to the multiplicative factor given in (17).  Starting 
to be evident in Fig. 4 are gaps in the allowed values of effective index.  As will be 
discussed in more detail later, these band gaps in effective index develop in the periodic 
optical structures considered here for the same reasons that bandgaps in energy develop 
for electrons in crystalline solids.  The mathematics is analogous in both cases.  In 
essence the one-dimensional ribbon structures constitute photonic crystals in the same 
mathematical and physical sense as they are for the holey fibers of current intense 
interest.      

Examining the plot in Fig. 4 and the Table I data, the mode with the highest gain 
is the 11th one listed.  The intensity envelope of this particular mode is shown in Fig. 5, 
illustrating that its high intensity lobes overlap the gain- loaded portion of the structure. 
 
 

Figure 5  Intensity envelope (shown in blue) of the electric field eigenmode with 
the highest G value for the 5-core ribbon structure detailed in Fig. 4.  
Superimposed in red is the refractive index profile of the structure (not to scale). 
The gain is located in the lower index regions within the waveguide structure. 

 
Although the mode shown in Fig. 5 has the highest gain, it does not have constant lobe 
intensity in the gain regions across the ribbon structure.  The two outlying gain regions 
see half the peak intensity of the central gain region.  Under conditions of strong gain 
saturation that would be required in an efficient laser, this implies the two outlying 
regions will not be as strongly extracted as the central regions, leaving an unbalanced 
gain profile across the structure.  This in turn may encourage an additional mode coming 
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in that extracts these outlying regions.  This problem of nonuniform peak intensity in the 
various gain cores can be attacked by specifically designing the ribbon structure to ensure 
the peak intensity is unchanged from core to core. 
 
3. Design Criteria for Constant Mode Intensity in Gain Cores  

Here we deduce the design rules for the one-dimensional ribbon structure so that 
the peak intensity in each gain core is a constant.  Equation (3) hints at how to proceed.  
If we can arrange for the electric field to null at each interface between the various index 
regions that make up the ribbon structure, then the lobes in the gain regions will all be 
identical as will the lobes in the non-gain regions.  To proceed we will fix a wavevector 
value and then construct the ribbon structure by letting the widths of the gain and no-gain 
regions vary.  To maintain a connection with the ribbon structure and eigenmode shown 
in Fig. 5, we will use the same refractive indices for the gain and no-gain regions as were 
used there.  To begin, we will focus on a wavevector value of 8.717/mm, the same 
wavevector value as eigenmode #11 shown in Fig. 5.  Calling the refractive index values 
of the gain and no-gain regions ng and nng respectively, we adjust the widths of the gain 
and no-gain regions such that the following two equations are simultaneously satisfied, 
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2
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n
l
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c

ω
β π

ω
β π

 
− = 

 

 
− = 

 

,        (18) 

 
where lg and lng are the widths of the gain and no-gain segments, respectively.  Equation 
(18) ensures one complete lobe will just fit into each of the index segments that makes up 
the ribbon structure.   Staying with the same vacuum wavelength of 1.05 mm for the 
radiation under consideration, solving the above equations gives 7.29 mm for the width of 
the gain region and 4.49 mm for the width of the no-gain regions.  The remaining issue 
concerns the width of the two end segments, which are no-gain regions.  Since the 
boundary condition of the outer no-gain segments is different than the interior no-gain 
segments, separate consideration must be given as to their widths to insure the field, 
which is nonzero at the outer waveguide surfaces, nulls to zero at the first interior 
interface.  This task is easy to accomplish using the boundary condition (8) and the 
electric field propagator given in (11).  Taken together these two equations give the 
electric field value at the first interface surface, 
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 −           = − + −             − 
 

, (19) 
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where nclad is the index of the pump cladding surrounding the waveguide region, ledge is 
the width of the no-gain edge region, and we have arbitrarily chosen the magnitude of the 
electric field to be unity at the left hand edge of the waveguide structure (x=0). Requiring 
the field at the first interior interface be zero leads to the following condition to be 
satisfied by the edge widths, 
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−       + − =      −  

 

.     (20) 

 
Taking the refractive index value of the cladding to be the same as before, 1.45, the edge 
length must be 3.497 mm to satisfy (20).  Table II summarizes the detailed design of the 
ribbon fiber and Fig. (6) gives a summary of this structure’s eigenmode spectrum in a 
plot of overlap vs effective index value. 
 
 
 

Table II  Detailed Design of One-Dimensional Ribbon Fiber Structure  
Width (mm) Refractive Index Gain Loaded? 

10 1.4500 no 
3.49727 1.4614 no 
7.29079 1.4585 yes 
4.49309 1.4614 no 
7.29079 1.4585 yes 
4.49309 1.4614 no 
7.29079 1.4585 yes 
4.49309 1.4614 no 
7.29079 1.4585 yes 
4.49309 1.4614 no 
7.29079 1.4585 yes 
3.49727 1.4614 no 

10 1.4500 no 
 
For mode #9 as shown in Fig. 7, each gain region contains a single lobe with uniform 
peak intensity, which is the desired result.  
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The ribbon structure having the mode spectrum plotted in Fig. 6 was specifically 

designed to ensure constant peak intensity in all the gain regions for the mode 
corresponding to wavevector 8.717/mm, the 9th mode listed. However, we also have the 
additional requirement that this mode should have the highest gain overlap (by a 
significant margin) to ensure good mode discrimination between itself and other possible 
competing modes, a constraint which is no longer satisfied.  It is seen that mode #5 now 
has higher overlap than the mode #9.  Examining mode #5, which is plotted in Fig. 8, it is 
seen that this eigenmode does not offer a uniform intensity lobe in each of the gain cores. 
 

 
 
 
 
 

Figure 6  The eigenmode overlap with the gain region is plotted against effective 
index.  Mode #9 was designed to exhibit uniform peak intensities across the 
waveguide structure, although mode #5 is seen to have the highest overlap.  

Figure 7  Intensity envelope (shown in blue) of the intensity eigenmode for 
which the ribbon structure was designed.  The widths of the individual index 
segments are adjusted so that each gain region sees the same peak intensity.  
Superimposed in red is the refractive index profile of the structure (not to scale).  
The gain is located in the lower index regions within the waveguide structure. 
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The forgoing analysis of modes #5 and #9 illustrates a general difficulty that is 
encountered in designing an antiguiding waveguide structure for which a single mode 
simultaneously has the highest gain overlap and also a uniform peak intensity in the gain 
regions.  Generally, these two conditions cannot be simultaneously satisfied in a robust 
way by a single transverse mode in a waveguide structure having a modulated refractive 
index profile.  
 
 
4. One-Dimensional Structures with Gain Variations and Constant Refractive Index 

As an alternative to the periodically modulated index structures just considered 
we now evaluate a waveguide structure having a uniform refractive index across its 
aperture and only modulate the gain profile periodically.  To keep a connection with the 
previously analyzed case displayed in Fig. 3, we keep the outer clad index value at 1.45 
and the waveguide at a constant index value of 1.4585.  Furthermore we design the gain 
modulation profile such that an eigenmode with wavevector value 8.717/mm is the 
favored mode in terms of gain overlap and there are five gain cores across the aperture.  
We also modify the previously considered structures by now locating a gain region at the 
ends of the waveguiding region whereas previously there were no-gain regions at these 
locations (the reasons for this change will be obvious below).  To begin, we arbitrarily set 
the gain fill factor in the interior of the waveguide structure to be 50%.  To maximize the 
gain overlap we wish to center the intensity peaks ( or antinodes) on the gain regions and 
intensity nodes on the no-gain regions, imposing a transverse gain spatial periodicity, 
lgain+l no-gain, given by 
 

( )
2

2wg
gain no gain

n

c

ω
β π−

 
+ − = 

 
l l .       (21) 
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Figure 8  Mode #5 from Fig. 6 has the highest overlap with the gain regions in 
the fiber structure, but does not have uniform peak intensity across the gain 
regions of the waveguide. Superimposed in red is the refractive index profile of 
the structure (not to scale). 
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Keeping the same 1.05 mm vacuum wavelength as used previously, the above equation 
gives the gain spatial periodicity as 7.290 mm.  The detailed design of the resulting 
constant index structure is given in Table III. 
 

Table III  Detailed Design of One-Dimensional Ribbon Fiber Structure With 
Constant Index in the Waveguide Region  

Width (mm) Refractive Index Gain Loaded? 

10 1.45 no 
4.36409 1.4585 yes 
3.64540 1.4585 no 
3.64540 1.4585 yes 
3.64540 1.4585 no 
3.64540 1.4585 yes 
3.64540 1.4585 no 
3.64540 1.4585 yes 
3.64540 1.4585 no 
4.36409 1.4585 yes 

10 1.45 no 
 
In the detailed design of the waveguide structure given in Table III, we have used an 
argument analogous to that used for tuning the thickness of the edge index regions of the 
structure referenced in Fig. 3.  This argument, which led to (20), is used here to keep the 
gain regions centered on the intensity peaks.  Performing the same type of eigenmode 
analysis as in the previous section leads to the eigenmode spectrum summarized in Table 
IV and Fig. 9, demonstrating the excellent mode discrimination that can be achieved for 
this ribbon structure. The waveguide was explicitly designed to optimize the overlap of 
mode #5 in Table IV. 
 

Table IV  Eigenmodes of One-Dimensional Structure Summarized in Table III 
Mode Reference 

Number 
b 

(1/microns) 
Overlap 

G  
Effective Index 

neff 
1 8.72722 0.50234 1.45843 
2 8.72593 0.50837 1.45821 
3 8.72380 0.51583 1.45786 
4 8.72082 0.52285 1.45736 
5 8.71700 0.84589 1.45672 
6 8.71235 0.53579 1.45594 
7 8.70688 0.54376 1.45503 
8 8.70063 0.55188 1.45399 
9 8.69364 0.55558 1.45282 
10 8.68602 0.54447 1.45154 
11 8.67821 0.46683 1.45024 
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Figure 10 shows a plot of the intensity profile of the preferred mode (mode #5) across the 
waveguide aperture.  It is evident from the plot that all the gain regions will be extracted 
uniformly in this case, as the peak intensity of the eigenmode within each gain region is 
constant across the entire aperture. 
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Figure 9  The eigenmode overlap with the gain region is plotted against eigenmode 
effective index for the modes listed in Table IV.  Mode #5, for which the structure was 
optimized, exhibits the highest gain overlap and  has excellent mode discrimination 
from all other modes supported by the structure.  

Figure 10 Plot of field intensity for mode #5 from Table V.  This mode 
has the highest overlap of all the allowed modes as well as a uniform 
peak intensity across the gain regions of the waveguide. Superimposed in 
green, is the gain profile of the structure with unity indicating there is 
gain loading and 0 indicating no gain.  The waveguide index profile is 
indicated by the red line (not to scale) with a constant value of 1.4585 in 
the waveguide and 1.45 in the outer cladding region. 
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The gain discrimination depicted in Fig. 9 clearly favors the single mode plotted in Fig. 
10 (mode #5).  By increasing the fill factor of the gain loaded regions beyond the 50% 
design point considered here, the G factor of the preferred mode can be increased beyond 
its value of 0.835.  This however will come at the expense of mode discrimination, as the 
G factor of all modes will also increase. 

As a consequence of eliminating the periodic variation in the refractive index, it is 
apparent that the photonic bandgap is also eliminated.  This effect is akin to having a 
constant potential in a crystal, as is approximately evidenced by certain band states of 
metals (i.e. a nearly free electron model).  It is also interesting to note that the highly 
favored mode in Fig. 10 may be regarded as the electronic wavefunction that would occur 
at the Brillouin zone boundary. 
 
5.  Theory and Numerical Method for Waveguide Simulations with 2 Transverse 
Dimensions  

The 1-dimensional transverse theoretical model outlined above gives insight into 
the occurrence of desired anti-guided leaky modes in structures of the type considered 
here.  In order to understand effects on performance of possible fabrication constraints, 
we have considered a number of designs with either rectangular or circular cores that 
either touch the boundary or are immersed in the inner cladding region. Various 
implementations correspond to the same 1-dimensional transverse structure (index 
distribution as seen on center line) analyzed in the preceding section.  The optical 
description of such structures is not necessarily separable, except perhaps in the effective 
index approximation, which requires solution of many 1-dimensional transverse 
waveguide structures to synthesize the full 2-dimensional transverse structure behavior.  
For this reason, we have employed a full 3-dimensional scalar wave propagation method 
to simulate the performance of target designs as detailed below. 

The amplitude u of a propagating electric field in normal fiber and integrated 
optical waveguides with small index contrast, i.e. where refractive index differences are 
small compared to the index, is well described by the scalar Helmholtz wave equation. 
 

2 2 2
0 ( , ) 0u K n x y u∇ + =         (22) 

   
Here n(x,y) is the refractive index which is assumed to depend on the transverse spatial 
coordinates x and y, K0 is the free space wavenumber 2π/λ  where λ is the vacuum 
wavelength.  Because the index is independent of z (position along the ribbon fiber), such 
a structure supports modes whose shape is independent of z.  Such a mode ui(x,y) 
propagates with a characteristic propagation constant β i’ which can be found from the 
eigenvalue equation, 
 

2 2 2 2
0 ( , ) ( ')i i iu K n x y u uβ⊥∇ + = ,       (23) 

 

here 
2 2

2
2 2x y⊥

∂ ∂
∇ = +

∂ ∂
 is the transverse Laplacian operator.  
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Since (22) is linear, the general solution is a linear combination of such modes with 
arbitrary amplitudes, each changing its phase with propagation distance according to its 
own characteristic modal propagation constant. 

Numerical solution of (22) can be difficult.  However, a convenient simplification 
is to make the slowly varying envelope approximation.  We assume that the amplitude u 
varies mainly as exp(iK cz) where Kc is a reference wavenumber (see below), i.e. we let 
 

            ( , , )  ( , , ) ci K zu x y z E x y z e= ,      (24) 
 
where E is only a very weak function of z.  This means E varies little over an optical 
wavelength.  In this case, substituting (24) into (22) and discarding the term ?2E/?z2 since 
it is small compared to Kc ?E/?z , we are left with the so-called paraxial wave equation 
 

( )2
2

2

,1
1

2 2
c

c c

n x yKE
i E E

z K n⊥

 ∂
= − ∇ + − 

∂  
      (25) 

 
where nc is the index corresponding to Kc, i.e. Kc = K0 nc. 

Note that this equation has exactly the form of the Schroedinger equation of 
quantum mechanics. Propagation distance z plays the same role in optical propagation as 
time does in the Schroedinger equation and the “potential energy” is given by the second 
right hand side term in (25) involving the refractive index.  There is thus a one to one 
analogy between optical waveguides and 2-dimensional (x,y) quantum mechanics.  We 
can rewrite (25) as, 
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  ∂
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,     (26) 

    
thus defining an optical Hamiltonian operator H as in quantum mechanics.  The 
eigenvalues and eigenfunctions of this operator  are the fundamental quantities that 
describe the nature of the optical waveguide.   It can be shown that the modal 
eigenfunctions of Eqs. (23) and (26) are exactly the same.8  However, their eigenvalues 
are different.  If 
 

    i i iH u uβ= ,         (27) 
 
then the relationship between β i and β i’  is 
 

2' 2c c cK K Kβ β β= − ≈ − .        (28) 
 
That is, β  represents the small change of the modal wavenumber β’ from the reference 
wavenumber Kc.  Because of the analogy with the Schroedinger equation, we see 
immediately that if we choose the cladding index to define Kc, then guided modes will 
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have negative values of β  (corresponding to bound states in quantum mechanics having 
negative energy) and radiation modes will have positive values of β .  

An ideal optical structure made up of repeated units is thus analogous to a crystal 
and is sometimes referred to as a photonic crystal.   This is the type of structure we 
propose here.  From solid state physics, we immediately understand that the modal 
propagation constants in such a structure will naturally be grouped into bands, and that 
there may be photonic band gaps in allowed propagation depending on the optical 
parameters. 

We solve (26) numerically using the Fast Fourier Transform based Beam 
Propagation Method (BPM) described in the references.9  An advantage of this approach 
is that for a lossless/gainless medium, it exactly conserves electromagnetic energy.  This 
is important so that reliable calculations can be carried out for a medium with small gain 
or loss.  The solution found for (26) is of the form E(x,y,z) where E is, in general, a linear 
combination of modes excited at the start of the calculation by assumption of an initial 
field E(x,y,0).  The modal propagation constants can be found by forming a correlation 
function P(z)  
 
 

( )  *( , ,0) ( , , )  P z E x y E x y z dx dy= ∫∫ .       (29) 

 
Since E is a linear combination of orthonormal modes, the correlation will necessarily be 
of the form 
 

2
 ( )   ni z

nP z A e β= ∑  .        (30) 
 
Where An is the amplitude of mode n and |An|2 is proportional to the power in mode n.  
Fourier transforming P(z) with respect to z yields  
 

( ) ( )2
P n nAβ δ β β= −∑ .        (31) 
 
That is, the spectrum of the correlation function consists of distinct lines centered at the 
modal propagation constants.  Once the modal propagation constants are known, the 
unnormalized mode shapes can be retrieved by projecting them from the propagated 
field, i.e., 
 

( ), ( , , ) ni z
nu x y E x y z e dxdyβ= ∫∫ .       (32) 

 
This technique has been used very effectively in modeling optical fibers, rib waveguides, 
x and y couplers and optical resonators. 

The above formalism remains the same in the case of a non-passive device, i.e. a 
device with distributed gain or loss. In this case, the delta function lineshapes in the 
spectrum of (31) are broadened by an amount proportional to the imaginary part of the 
modal wavenumber.  A numerical technique that “measures” this width, then gives a 
direct value for the modal gain. 
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5.1  Simulations  
We have used a numerical code embodying the above formalism in our simulations of the 
2-dimensional transverse ribbon structure. Typically, the inserted field is propagated on a 
256x64 grid and the propagated field evaluated as a function of transverse coordinates x 
and y at 32800 longitudinal z values. The complex modal propagation constants and 
modal field patterns can then be calculated. 

A cross section of a sample ribbon laser structure is shown in Fig. 11.  Both 
refractive index and small signal gain are spatially distributed.  Simulations are started 
with an initial field.  Part of this field projects onto waveguide modes and is propagated.  
The rest is radiated away from the structure.  To prevent this radiated energy from 
reflecting from the numerical boundaries of the simulation, an absorbing layer is placed 
around the outer boundary. 

 
 
 
 
 
 

Figure 11  Cross sectional view of ribbon structure with 2 transverse dimensions 
that is analyzed in the text.  The gain loaded portions of the waveguide are 
indicated by the dark regions in the upper picture.  The refractive index is 
constant throughout the waveguide region and equals 1.4585. 

Figure 12  Spectral power of modes excited by Gaussian beam 
inserted into structure described in Fig. 11. 
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Propagating the initial field and calculating the correlation function defined in 
(30) and its Fourier transform with respect to propagation distance leads to the spectrum 
shown in Fig.12.  Excited modes appear as distinct spectral lines.   Table V lists the 
wavevector values and effective index values of  the spectral peaks in Fig. 12.  For 
convenience of comparison we also list the wavevector and effective index values found 
with the 1-dimensional model for the corresponding 1-dimensional strucutre generated by 
by taking a line out along the x-axis of the 2-dimensional structure depicted in Fig 11.   
 

Table V  Comparison of Modes Found Using Corresponding 1-D and 2-D  
Models    

 
Mode 

Number 

 
Wavevector 

(mm-1) 
 

 
Mode Effective Index 

 

 
Gain Overlap 

 2-D Model 1-D Model 2-D Model 1-D Model 2-D Model 1-D Model 
1 8.720 8.727 1.45719 1.45844 0.4154 0.4998 
2 8.719 8.726 1.45701 1.45825 0.3876 0.4989 
3 8.717 8.724 1.45671 1.45795 0.42688 0.4960 
4 8.714 8.722 1.45629 1.45751 0.3953 0.4814 
5 8.711 8.718 1.45575 1.45696 0.7436 0.8308 
6 8.707 8.714 1.45509 1.45629 0.46586 0.5543 
7 8.703 8.710 1.45432 1.45550 0.46738 0.5456 
8 8.697 8.704 1.45343 1.45459 0.47568 0.5445 
9 8.691 8.698 1.45244 1.45357 0.4739 0.5436 
10 8.685 8.691 1.45136 1.45244 0.39566 0.5394 
11 8.678 8.684 1.45022 1.45123 0.02086 0.5232 

 
In both the 1-D and 2-D analyses, the 5th mode is the one with the highest gain. 
 
6   Robustness of designs to variations in refractive index and width dimensions  

The ultimate goal of this study is to develop an understanding of robust fiber 
ribbon designs that will guarantee single transverse mode operation in the presence of 
strong gain saturation.  As such, it is useful to develop a criterion for how tightly design 
tolerances, both cell refractive indices and cell dimensions, must be held for the various 
cells that comprise a given structure.  We investigate this issue in two different regimes.  
First we look at the impact of systematic variations in cell refractive indices and cell 
dimensions.  This type of systematic error represents what we will likely see in structures 
fabricated using a fiber pulling technology.  Cell dimensions will tend to vary together, 
shrinking below or expanding above the design point due to the manner in which the 
ribbons are pulled.  Also, because we anticipate using the same starting material for all 
the gain and all the no-gain portions of the various cells that comprise the waveguide 
region of the ribbon, we expect index errors from the desired design point to occur 
uniformly throughout the structure.  In addition to investigating these systematic errors, 
we also then go on to investigate random errors in both cell refractive indices and cell 
dimensions for very large, 100 core structures.  Such errors characterize uncontrolled 
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aspects of the ribbon structure fabrication and could be an issue in the developing 
technology we anticipate using. 
 
6.1  Systematic Errors  

Here we determine what the variations in the refractive indices of the gain and no-
gain regions can be and still ensure the structure will support only a single transverse 
mode.  Because the 1-D code can be quickly executed, it is better suited to running the 
large number of cases required supporting this parameter study.  The 2-D code was then 
used on a smaller scale to confirm the results of the 1-D code.   

Using the constant index 5-core structure depicted in Fig. 13, a series of runs were 
made to determine sensitivity to systematic variations in the refractive indices of the gain 
and no-gain cells.   In this series of runs we kept the geometry constant, allowing only the 
index difference to vary from run to run.  The ribbon had a total of 5 gain cores, 
beginning and ending with gain regions.  All pieces were rectangular in cross-section 
with the gain and no-gain regions the same height, i.e. there was no border of no-gain 
material surrounding the structure.  The line across the middle represents the line out of 
the structure used in the 1-D model.   
 
 
 
 
 
 

Figure 13  Structure modeled in the one dimensional and two dimensional 
performance sensitivity runs.  This structure was held constant while the index 
was varied in the first series of runs and considered the constant geometry in the 
geometry sensitivity runs.  The heavy dashed blue line represents the one-
dimensional line out of the structure.  Shaded regions are gain-loaded. 

 
We used an index of 1.45 for the cladding, while the gain-doped regions were held fixed 
at an index of 1.4585 and the non-gain regions were allowed to vary between 1.4628 and 
1.4542.  The data were compiled by the delta index value of “gain index – no-gain 
index”.  This range of allowed indices for the no-gain regions represents both “guided-
like” (gain index > non-gain index) and “anti-guided-like” (gain index < non-gain index) 
variations.   For each index difference, the largest and second largest gain overlap modes 
were recorded.  A total of 11 cases were run using the one-dimensional model.  Five of 
the 11 cases were rerun using the two dimensional model.  Figure 14 is a plot of Overlap 
vs. Index Difference and presents both the 1-D and 2-D results.   
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Table V  Overlap of two strongest eigenmodes of 1-dimensional structure with 
varying index differences 

Highest Gain Overlap Mode  2nd Highest Gain Overlap 
Mode 

 
 
Delta Index Mode β  

 (1/µm) 
Effective 
Index 

Overlap 
     Γ  

Mode β  
 (1/µm) 

Effective 
Index 

Overlap 
     Γ  

0.0043 
0.0033 
0.0023 
0.0013 
0.0003 
0.0000 

-0.0003 
-0.0013 
-0.0023 
-0.0033 
-0.0043 

 

8.7153 
8.7159 
8.7166 
8.7173 
8.7182 
8.7184 
8.7187 
8.7198 
8.7210 
8.7224 
8.7240 
 

1.4564 
1.4565 
1.4567 
1.4568 
1.4569 
1.4570 
1.4570 
1.4572 
1.4574 
1.4576 
1.4579 
 

0.88 
0.88 
0.87 
0.86 
0.84 
0.84 
0.83 
0.81 
0.78 
0.75 
0.72 
 

8.7160 
8.7167 
8.7175 
8.7188 
8.7209 
8.7144 
8.7151 
8.7171 
8.7186 
8.7202 
8.7218 
 

1.4566 
1.4567 
1.4568 
1.4570 
1.4574 
1.4563 
1.4564 
1.4567 
1.4570 
1.4572 
1.4575 
 

0.87 
0.86 
0.82 
0.73 
0.55 
0.56 
0.61 
0.71 
0.74 
0.74 
0.71 
 

 
 
 Table VI  Overlap of two strongest eigenmodes of 2-dimensional structure with 
varying index differences 

Highest Gain Overlap Mode  2nd Highest Gain Overlap 
Mode 

 
 
Delta Index Mode β  

 (1/µm) 
Effective 
Index 

Overlap 
     Γ  

Mode β  
 (1/µm) 

Effective 
Index 

Overlap 
     Γ  

0.0043 
0.0013 
0.0000 

-0.0013 
-0.0043 

8.7100 
8.7098 
8.7112 
8.7128 
8.7001 

1.4555 
1.4555 
1.4557 
1.4560 
1.4539 

0.72 
0.75 
0.70 
0.69 
0.61 

8.7090 
8.7134 
8.7026 
8.7058 
8.7182 

1.4554 
1.4561 
1.4543 
1.4549 
1.4569 

0.67 
0.55 
0.42 
0.53 
0.57 
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Figure 14  Overlap vs. Index Difference plot for 1-D and 2-D cases with 
systematic index variation between the gain and no-gain regions. 

 
Although the gain overlap increases as the index difference increases, Figure 14 shows 
the point of maximum discrimination occurs with an index difference of zero.   Also, 
evident in Fig. 14 is the qualitative similarity between the 1-D and 2-D calculations, both 
showing maximum gain discrimination for an index difference of 0.0.  Remember, one of 
the critical design requirements is the structure oscillate in a single transverse mode 
making good mode discrimination a strong figure of merit in the design.  As the index 
difference increases (in both the positive and negative direction), the overlap values of 
the two strongest modes get closer, increasing the chance the structure will “hop” from 
one mode to the other during operation.  

We next explored the structure’s sensitivity to geometry (cell width) variations. 
The dimensions of all cells within the structure were varied by the same amount, 
mimicking the type of systematic error that might be expected in fabricating the structure 
using a fiber pulling technique.  For this parameter study we varied each cell width by a 
specified amount (±2%, ±4%, ±6%, ±8%, and ±10%) from its original value.   This 
parameter study was repeated for systematic index variations of -0.0013, 0.0, and 0.0013.  
All runs were done with the 1-D model.  As seen in Figure 15 where the results of this 
study are plotted, varying the cell widths has little impact on either the gain overlap value 
or the mode discrimination out to the ±10 % systematic variations investigated here.    
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Figure 15 Gain Overlap vs. Index Difference of the two highest overlap 
modes for three different values of cell ∆n.  All data points were 
calculated using the one-dimensional model.   

 
Based on these results, we feel an acceptable index difference is ±0.001 with a target 
difference of 0.0.  Within this index difference range, we should be able to handle cell 
width fabrication errors of ±10% and possibly more.   
 Important for power scaling is the question of required index tolerance as a 
function of the number of cores.  To answer this question, we have repeated the forgoing 
5-core structure analysis in which the refractive index of the gain and no-gain cells was 
systematically varied for a 20 core and 100 core ribbon fiber structure.  Figure 16 depicts 
the results of this study.  The data in Fig. 16 was generated using the 1-D code with sub-
cell dimensions identical to those depicted in Fig. 13.  Evident in Fig. 16 is the 
observation that, as the number of cells increases the requirements on the systematic 
variation of the refractive index become more stringent.  To better quantify this scaling 
law, we have determined the FWHM spread in index for which the gain discrimination 
between the two highest overlap modes just halves from its peak value at Dn=0.  These 
FWHM values are indicated in Fig. 16.  In Fig. 17, we plot these FWHM index spreads 
against the inverse number of gain cores (1/ncores) for the three cases studied here.  As 
seen from the data plot in Fig. 17, the DnFWHM requirement varies almost linearly with 1/ 
ncores, which is what we intuitively expect.   However, a variation of DnFWHM as (1/ 
ncores)0.75 gives a better empirical fit to the data than does a variation as 1/ ncores.  The solid 
line in Fig. 17 is a plot of 0.0084(1/ ncores)0.75, which represents the best least squares fit 
of this empirical functional form to the data.  
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Figure 16  Overlap vs. Index Difference plot for 1-D structures having a  
systematic index variation between the gain and no-gain regions.  Three 
different structures were investigated consisting of 5, 20 and 100 cores, 
respectively.  For each structure investigated the gain overlap of the highest 
overlap and next highest overlap mode are plotted against the systematic index 
variation. 
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6.2  Random Errors    

In addition to the systematic errors just considered, random variations in cell 
index and cell dimension may be an issue, particularly in fiber structures consisting of a 
large number of cells.  To investigate the impact of random index variations we have 
modeled a 100-core ribbon fiber with nominally constant index throughout the 
waveguiding region.  The particular 1-dimensional waveguide design investigated here 
consists of a structure similar to the one of Fig. 13 but with cell dimensions of 3.65 µm 
for the central cells and 4.36 µm for the 2 end cells.  The impact of random variations in 
cell refractive index is illustrated in Fig. 18 where we have plotted the structure’s 
eigenmode gain overlap against the various mode effective refractive indices.  In each 
case, the individual cells that comprise the waveguide have had their refractive indices 
randomly varied with a uniform spread about the design point.  The magnitudes of the 
uniform random distributions were taken to be Dn=0, Dn=±0.00015, Dn=±0 .00037, and 
Dn=±0.00073 as indicated.  In Fig. 19, the overlaps of the two highest gain overlap 
modes for this structure are plotted as a function of the random error introduced in the 
individual cell refractive indices.  Examining this plot, it is seen that the gain 
discrimination between the two highest overlap modes begins to substantially degrade 
when random index variations are approximately Dn=±0.00037, in approximate accord 
with the FWHM deduced in Figs. 16 and 17.  We have also modeled the impact of 
random variations in the cell dimensions for the 100-core structure studied here and 
found in general it is very robust to these types of variations.  Based on our modeling, 
random dimensional variations at the ±10% level do not significantly degrade the mode 
overlap and mode overlap discrimination and so are probably not an issue with the device 
fabrication. 
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Figure 18  The impact of random variations in cell refractive index are illustrated here 
using a 100 core structure in which gain overlap of the structure’s eigenmodes are plotted 
against the various mode’s effective refractive index.  In each case, the individual cells that 
comprise the waveguide have had their refractive indices randomly varied with a uniform 
spread about the design point.  The magnitudes of the uniform random distributions were 
taken to be Dn=0, Dn=±0.00015, Dn=±0 .00037, and Dn=±0.00073 as indicated. 
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7  Pump Coupling and Enegetics Performance 
 The proposed ribbon laser structures we have been discussing within would use a 
side-pumping scheme, with pumps placed periodically along the fiber.  Figure 20 shows 
the way a nominally 50 W bar is coupled to the pump cladding via a diffraction grating.  
Note that other than this grating, there is no beam conditioning of the diode, making the 
pump module simple.  This is an important advantage of our proposed approach over 
other more conventional end-pumped approaches, as the diode lasers used in the side 
pumping approach require no exotic or expensive radiance conditioning.  
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Figure 20  Diode bar side-pumping scheme. 
 

Figure 19  Gain overlap for 100-core ribbon fiber.  The 
overlap of the two highest gain overlap modes is plotted as a 
function of the random error introduced in the individual cell 
refractive indices.  Random errors in refractive indices  are 
uniformly distributed with the indicted amplitudes. 
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As a preliminary step to demonstrating a large multiple core device, we propose first 
demonstrating a 5-core structure.  The goal of this first prototype device is to 
convincingly demonstrate that we can operate in a single transverse mode that exhibits 
good intensity uniformity across the entire array of gain cores.  To take advantage of the 
large body of work that has already been developed toward the fabrication of holey 
fibers, we are initially proposing that our ribbon structure will be fabricated using the 
same technology10.  In particular, we propose collaborating with Prof. Phillip Russell and 
his group at the University of Bath to fabricate the 5-core Nd:Silica structure depicted in 
Fig. 21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The choice of going with a round cross-sectioned pump cladding region is to stay 
compatible with the presently developed holey fiber technology, although we ultimately 
are interested in going to rectangular cross-sectioned pump cladding to be compatible 
with our proposed side-pumping scheme shown in Fig. 20.  We anticipate doing initial 
laser mode characterizations with the structure shown in Fig. 21 configured as an 
oscillator.  The proposed silica based design would use a fiber having a length of 25 m 
and end-pumped by an approximately 1 W source.  The refractive index of the 
waveguiding region is nominally designed to be constant in value and larger than the 
surrounding pump cladding by 0.0085.  The gain cores are doped with Nd at 1x1019/cm3.  
A simple energetics model11 has been adapted to this structure and predicts 270 mW of 
generated laser output power, or roughly a 27% optical-optical conversion efficiency.  
Figure 22 is a plot of model predicted output power against output coupler reflectivity 
showing optimum performance with a 15% reflective output coupler.    
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Figure 21  Using the same technology currently used to fabricate holey fibers, we are 
collaborating with the University of Bath to have the pictured prototype 5-core device 
fabricated. 
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The mode overlap as a function of the effective refractive index, and the intensity profile 
of the favored high overlap mode follow in Figs. 23 and 24, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23  Mode overlap with gain region for prototype 5-core structure as a 
function of mode refractive index (1-dimensional calculation). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 24  Intensity profile of highest gain overlap mode. 
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Figure 22  Predicted 5-core prototype ribbon fiber energetics 
performance. 
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